# XtendLan" 

FMUX - 2020

## PCM Multiplexer

Operation Manual

## Content

FMUX 2020 .....  .1
PCM Multiplexer .....  1
1 Summary .....  4
2. Main technical character .....  5
3. Hardware Characteristic .....  6
3.1 Fundamental .....  6
3.2 Mechanical Framework .....  7
3.3 Main technical Parameter .....  8
3.3.1 E1 interface ..... 8
3.3.2 Audio interface ..... 8
3.3.3 Data interface ..... 8
3.3.4 Working condition ..... 8
4.Network application .....  8
5. Installation explain .....  9
5.1 Check whether the equipment and spare part are all right .....  9
5.3 Connection of 2 M signal .....  9
5.4 Connection of network interface (RS232) cable ..... 10
5.5 V .24 data interface ..... 10
Table 2 Reference of synchronous V24 signal cable connection wire ..... 11
5.7 10Base-T Ethernet data interface ..... 13
5.8 X. 50 data interface ..... 13
5.9 64kb/s G703 data interface ..... 14
5.10 UIF data interface. .....  .14
5.112 -wire audio interface ..... 14
5.12 EM audio interface ..... 15
5.13 2/4-wire magneto interface ..... 15
$5.142 \mathrm{Mb} / \mathrm{s}$ interface ..... 15
6. Malfunction diagnosis and operation. ..... 16
6.1 Panel indicator light ..... 16
6.2 Halting ring operation ..... 18
6.3 System configuration ..... 18
6.3.1 NMS address configuration ..... 18
6.3.2 System configuration ..... 18
6.3.2.1 Configuration of MCT board ..... 18
6.3.2.2 Configuration of 10Base-T Ethernet board ..... 18
6.3.2.3 Configuration of 2 M board ..... 19
6.3.2.4 Configuration of UTF board ..... 19
6.3.2.5 Configuration of EM board ..... 19
6.3.2.6 Configuration of magneto interface board ..... 19
6.3.2.7 Configuration of V. 35 board ..... 20
6.3.2.8 Configuration of HOT board ..... 20
7 Network management system ..... 20
7.1 Connection mode ..... 20
7.3 Main function and operation introduction ..... 21

## 1 Summary

Nowadays, optical fiber communication and standard interface E1 are widely used, how to solve audio, low-speed data, ISDN, and computer access with relatively low cost and flexibly have been a bothered problem to special network engineer. Based on widely market investigation and absorb advantages of many manufactures,

FMUX2020 PCM multiplexer( hereinafter shortly refer to FMUX2020) is one of FMUX series transmission network products. It can provide users with the combination of 2 -wire loop interface, 4 -wire E/M interface, RS-232 asynchronous interface, V. 35 (or G. 703 synchronous data interface), ISDN-U interface, and $10 / 100 \mathrm{M}$ Ethernet interface etc. with total capacity up to $2.048 \mathrm{Mb} / \mathrm{s}$.

GK FMUX 2020 Intelligent Multiplexer is highly integrated and designed with up-to-date large-scale IC (Integrated Circuit). It features advanced network management system and can be maintained easily. The company owns its self-developed IP(Intelligence Property) rights and therefore can satisfy clients' special requirements. In terms of network configuration, it can be used in point-to-point or chain-like network.

## 2. Main technical character

a) Providing double E1 port ( both east direction and west), supporting 75 coaxial or 120 balance cable connection and self-connectin when power supply is cut off.
b) Double E1 port (both A and B direction) is designed for the networks requiring the add/drop multiplexing of sub-rate signals. After add/drop multiplexing or insert part of sub-rate signals, the E1 signal from A direction can continue to be transmitted to B direction thus completing the relay function.
c) Inserted board structure can provide abundant voice interface by choose different board:

1) LS (Loop Subscriber) interface, also called primary station interface or 2-wire subscriber loop interface, is connected with telephone set. 4 channels of each board.
2) LE (Loop Exchange) interface, also called slave station interface or 2-wire loop exchange interface, is connected with the exchange ; 4 channels of each board.
3) E/M 4-wire interface, E/M 2/4-wire audio interface board includes E/M signaling, 4 channels of each board. Switch of $2 / 4$-wire can configured by switch in the board, and level can be modulated by network management, also 4 channels of each board.
4) Magneto interface, used in dedicated line telephone, provides ringer and the test of ringing current, 4 channels of each board.
5) Hotline interface can provide two kinds of voice operation: Hotline mode, realizing point -to -point calls and communication of two terminals. Its loop-circuit function is as the same as LS board, realizing choice of the two mode via jumper in the board, 4channels of each board.
d) Providing abundant data interface:
6) V. 35 synchronous data interface with a rate of $\mathrm{N} 64 \mathrm{~kb} / \mathrm{s}$, up to a maximum of $1.984 \mathrm{Mb} / \mathrm{s}$, providing direct connection with DTE or DCE equipment, 2 channels of each board.
7) G. $70364 \mathrm{~kb} / \mathrm{s}$ synchronous data interface, 4channels of each board.
8) V. 24 synchronous data interface with a rate of $2.4 \mathrm{k}, 4.8 \mathrm{k}, 9.6 \mathrm{k}, 19.2 \mathrm{k}, 38.4 \mathrm{k}$, $64 \mathrm{~kb} / \mathrm{s}$. Synchronous or asynchronous mode, X. 50 multiplexing protocol or direct sample of sub-rate, supporting direct connection with DTE or DCE equipment. 4 channels of each V. 24 board, while 5 channels of each X. 50 board.
9) Ethernet interface, providing 10/100M Ethernet bridge function, and 1 channel of each board.
10) U interface (ISDN), maximal data transmission rate up to $128 \mathrm{~kb} / \mathrm{s}, 2$ channels of each board.
(e) With the connection to the PC through serial interface RS-232, the FMUX 2020 Intelligent Multiplexer can realize the network management. The management functions include alarm and status display, interface type and circuit configuration, as well as loop back test etc. Operating system WIN9X/NT is used in PC and a single PC can management as many as 99 terminals.

## 3. Hardware Characteristic

### 3.1 Fundamental

FMUX 2020 2 Mb/s Intelligent Multiplexer is a kind of primary group equipment with standard pulse code modulation (PCM), compliant with GB6879-86, "Technical Requirements for 2048Kbit/s 30 Channels PCM Multiplexer Equipment", and supporting the multiplexing of various sub-rate signals. Please refer to figure. 1.


Figure 1 Functional Block Diagram
The collective connection show as figure 2, main control board and interface board connected via PCM high speed bus, within signal PCLK, DR, DX, FS, to complete transmission of voice and data signal. Control of interface board is realized by AD-BUS, this information include: interface board type, running state, CAS, add/drop multiplexing of sub-rate signals etc. The location of interface board LN can be inserted in any type of audio board. Monitor system identify the interface board type automatically and configure standard configuration of time slot.


Figure 2 Collective connection diagram

### 3.2 Mechanical Framework

The box dimension is $345 \mathrm{~mm} \times 200 \mathrm{~mm} \times 210 \mathrm{~mm}$, and three options for installation are provided :19" frame (hole spacing: 461.5 mm ), European standard frame (hole spacing: 515 mm ) and wall mounting. Every unit has 13 circuit boards if fully equipped and all signal lines are connected to the front panel.

| M | L | L | L | L | L | L | L | L | L | L | L | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | N | N | N | N | N | N | N | N | N | N | N | O |
| T |  |  |  |  |  |  |  |  |  |  |  | W |

MCT--Main Control Board, LN--Line Interface Board, PWR--Power Supply
Board (which can be inserted in the position of LN, used for stand-by)
Figure 3 Mechanical Framework of FMUX2020 multiplexer


Figure 4a) 19" frame installation diagram
Figure 4b) European standard frame installation diagram


Right wall-mounting bent angle bar

## Figure 5 Wall mounting diagram

Figure 4 is the installation diagram on two different width self of the same kind bend angle bar (Installation angle and direction of bend angle bar are different). Figure 5 is wall mounting diagram.

### 3.3 Main technical Parameter

### 3.3.1 E1 interface

a) Standard rate: $2048 \mathrm{~kb} / \mathrm{s}$, capacitance difference $\pm 50 \quad 10^{-6}$.


### 3.3.2 Audio interface

a) Impedance: 600
b) A rule condensed coding;
c) Audio modulation range:

1) Audio 2-wire: Receiving signal level $0 \mathrm{dBr}^{\sim} \sim-7.5 \mathrm{dBr}$, sending signal level $0 \mathrm{dBr}^{\sim}-7.5 \mathrm{dBr}$
2) Audio 4-wire: Receiving signal level $+2 \mathrm{dBr}^{\sim}-13 \mathrm{dBr}$, sending signal level $+1 \mathrm{dBr}^{\sim}-14 \mathrm{dBr}$.

### 3.3.3 Data interface

a) V. 24 data interface, rate below $64 \mathrm{~kb} / \mathrm{s}$, synchronous or asynchronous, X. 50 multiplexing;
b) G. $70364 \mathrm{~kb} / \mathrm{s}$ synchronous data interface;
c) V. 35 synchronous interface, rate is $\mathrm{N} 64 \mathrm{~kb} / \mathrm{s}$, maximum is up to $1.984 \mathrm{Mb} / \mathrm{s}$;
d) Data line ISDN-U interface, rate is $128 \mathrm{~kb} / \mathrm{s}$;
e) 10 Base-T Ethernet interface, rate is $10 / 100 \mathrm{Mb} / \mathrm{s}$.

### 3.3.4 Working condition

a) Working voltage : D.C $\pm 48 \times(1 \pm 20 \%)$ V or A.C $220 \times(1 \pm 20 \%)$ V;
b) Relative humidity : $10 \%-90 \%$, not condensation;
c) Environmental temperature : 0 C 40 C ;
d) Storing temperature: - 30 C 60 C ;
e) atmospheric pressure : $86 \mathrm{kPa} \sim 106 \mathrm{kPa}$;
f) power consume: $\leq 40 \mathrm{~W}$

## 4. Network application

Show as figure 6:


Figure 6 Connection diagram of FMUX2020 multiplexer network configuration
FMUX2020 multiplexer connect with PC via RS232 serial interface to realize network management function. Multiplexer extract $2 \mathrm{Mb} / \mathrm{s}$ signal which transmitted by base station, providing V. 35 and V. 24 interface.

## 5. Installation explain

### 5.1 Check whether the equipment and spare part are all right

Fixed power supply plug on $+48 \mathrm{~V} /+24 \mathrm{~V}$ or $-48 \mathrm{~V} /-24 \mathrm{~V}$ power supply wire followed as figure 7 , and then insert it in power supply jack; AC power supply jack be inserted in directly.


Figure 7 Connection of power supply wire

### 5.3 Connection of $\mathbf{2 M}$ signal

$2 \mathrm{Mb} / \mathrm{s}$ interface connect with the outside via coaxial cable, when exterior wire is 75 coaxial cable, I1 and 01 means input and output of $2 \mathrm{Mb} / \mathrm{s}$ signal of the first channel(or called A direction), while $\mathbf{I} 2$ and 02 means input and output of $2 \mathrm{Mb} / \mathrm{s}$ signal of the second channel(or called B direction). Coaxial cable configuration is shown as figure 7 and figure 8.

Coaxial cable


Cut cover of coaxial cable


Figure 8 Facture of coaxial cable connector

When exterior wire is 120 coaxial cable, connecting with the outside via DB9 connection jack, show as figure 9.


Figure 9 Connection of 2M/b $\mathbf{1 2 0}$ coaxial cable

### 5.4 Connection of network interface (RS232) cable

## Show as figure 10



FMUX2020 multiplexer

Figure 10 Connection of network interface (RS232) cable

### 5.5 V. 24 data interface

Each V24-RS232 interface board of FMUX2020 multiplexer can provide 4 channels of RS232 data interface at most, connecting with exterior wire via RJ45 connection jack, supporting synchronous and asynchronous interface. Asynchronous data transmitted with sample mode, maximal rate up to $19.2 \mathrm{~kb} / \mathrm{s}$, and each channel occupy a $64 \mathrm{~kb} / \mathrm{s}$ time slot; Synchronous data rate is $64 \mathrm{~kb} / \mathrm{s}$. Every kinds of data format is configured by network management software.

Signal connection of RJ45 connection jack show as figure 9:


V24-RS232 interface can connected with synchronous or asynchronous DTE or DCE port, please refer to table 2 and table 3 .

Table 2 Reference of synchronous V24 signal cable connection wire

| Signal <br> Name | DTE <br> Equipment <br> V24 port DB25S | Connection mode | FMUX-RJ45 |  | Connection mode | DCE <br> Equipment <br> V24 port <br> DB25P | Signal <br> Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TXD | 2 | $\longrightarrow$ | TXD | 6 | $\longleftarrow$ | 3 | RXD |
| RXD | 3 | $\longleftarrow$ | RXD | 5 | $\longrightarrow$ | 2 | TXD |
| GND | 7 | $\longleftrightarrow$ | Ground | 4 | $\longleftrightarrow$ | 7 | GND |
| TTC | 24 | $\longrightarrow$ | TXC | 7 | $\longleftarrow$ | 17 | RC |
| TC | 15 |  | RXC | 8 | $\longrightarrow$ | 24 | TTC |
| RC | 17 | $\leftarrow$ |  |  |  |  |  |
| CTS | 5 | $\longleftarrow$ | 0 output | 1 | $\longrightarrow$ | 20 | DTR |
| DSR | 6 | $\leftarrow$ |  |  |  | 6 | DSR |
| DTR | 20 |  |  |  |  | 5 | CTS |
| RTS | 4 |  |  |  |  | 8 | DCD |
| DCD | 8 | $\longleftarrow$ | DCD | 2 | $\longrightarrow$ | 4 | RTS |

Table 3 Reference of asynchronous RS232 signal cable connection wire (DSR/DTR follow control mode)

| Signal <br> Name | DTE <br> Equipment |  | Connection <br> mode | FMUX |  | Connection mode | DCE <br> Equipment |  | Signal <br> Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | DB9S | DB25S |  | RJ45 |  |  | DB9P | DB25P |  |
| TXD | 3 | 2 | $\longrightarrow$ | TXD | 6 | $\longleftarrow$ | 2 | 3 | RXD |
| RXD | 2 | 3 | $\longleftarrow$ | RXD | 5 | $\longrightarrow$ | 3 | 2 | TXD |
| GND | 5 | 1, 7 | $\longleftrightarrow$ | Ground | 4 | $\longleftrightarrow$ | 5 | 1, 7 | GND |
| DTR | 4 | 20 | $\longrightarrow$ | TXCTL | 3 | $\longleftarrow$ | 6 | 6 | DSR |
| DSR | 6 | 6 | $\longleftarrow$ | RXCTL | 1 | $\longrightarrow$ | 4 | 20 | DTR |
| CTS | 8 | 5 | $\longleftarrow$ | RXC | 8 | $\longrightarrow$ | 7 | 4 | RTS |
| RTS | 7 | 4 |  |  |  |  | 8 | 5 | CTS |
| DC D | 1 | 8 | $\longleftarrow$ | DCD | 2 |  | 1 | 8 | DC D |

### 5.6 V. 35 data interface

Each V. 35 interface board of FMUX2020 multiplexer can provide 2 channels of V. 35 synchronous data interface, connecting with exterior wire via DB15 negative jack, supporting $\mathrm{N} \times 64 \mathrm{~kb} / \mathrm{s}$ (maximal rate up to $1984 \mathrm{~kb} / \mathrm{s}$ ),
and occupying $\mathrm{N} 64 \mathrm{~kb} / \mathrm{s}$ time slot. Occupied time slot and rate of V. 35 interface are configured by NMS.
Table 4 and table 5 is corresponding connect pins. CH1 and CH2 means the first channel and the second channel synchronous data interface.

Table 4 Connection with DTE equipment (DCE port)

| 15 Pin No. | Name | Direction | Explanation | Corresponding | Level |
| :--- | :--- | :--- | :--- | :--- | :--- |


|  |  |  |  | V. 35 Terminal |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GND | Dual direction | Protect ground pin (shield) | A |  |
| 2 | SDA | To PCM | Send data A | P | V. 35 |
| 9 | SDB | To PCM | Send data B | S | V. 35 |
| 5 | CTS | From PCM | Sending $\quad$ is getting ready getting ready | D | V. 28 |
| 12 | DSR | From PCM | PCM is getting ready | E | V. 28 |
| 12 | DCD | From PCM | PCM receiving is normal | F | V. 28 |
| 8 | GND | Dual direction | Protect ground pin (shield) | B |  |
| 4 | RDA | From PCM | Receive data A | R | V. 35 |
| 11 | RDB | From PCM | Receive data B | T | V. 35 |
| 14 | SCA | From PCM | Transmitting clock A | Y | V. 35 |
| 15 | SCB | From PCM | Transmitting clock B | AA | V. 35 |
| 6 | RCA | From PCM | Receiving clock A | V | V. 35 |
| 13 | RCB | From PCM | Receiving clock B | X | V. 35 |
| 3 | SCEA | To PCM | Exterior synchronizatio n clock A | U | V. 35 |
| 10 | SCEB | To PCM | Exterior synchronizatio n clock B | W | V. 35 |
| Note : PCM means FMUX2020 multiplexer and pins not be $\mathbf{1 i n e d}$ out needn ${ }^{\boldsymbol{>}}$ t to be connected. |  |  |  |  |  |

Table 5 Connection with DCE equipment (DTE port)

| 15 Pin No. | Name | Direction | Explanation | Corresponding <br> V.35 Terminal | Level |
| :---: | :---: | :--- | :--- | :---: | :---: |
| 1 | GND | Dual <br> direction | Protect ground <br> pin (shield) | A |  |
| 2 | RDA | To PCM | Receive data A | R | V.35 |
| 9 | RDB | To PCM | Receive data B | T | V. 35 |
| 4 | SDA | From PCM | Send data A | P | V. 35 |
| 11 | SDB | From PCM | Send data A | S | V. 35 |
| 5 | DTR | From PCM | Data terminal is <br> getting ready | H | V. 28 |
| 12 | RTS | From PCM | Requiring sending | C | V. 28 |
| 8 | GND | Dual <br> direction | Signa ground <br> Loop-circuit | B |  |


| 6 | SCEA | From PCM | Exterior <br> synchronizatio <br> n clock A | U | V.35 |
| :---: | :---: | :--- | :--- | :---: | :---: |
| 13 | SCEB | From PCM | Exterior <br> synchronizatio <br> n clock A | W | V.35 |
| 3 | RCA | To PCM | Receiving clock <br> A | V | V.35 |
| 10 | RCB | To PCM | Receiving clock <br> B | X | V.35 |
| Note : PCM means FMUX2020 multiplexer and pins not be lined out needn $>t$ to <br> be connected. |  |  |  |  |  |

### 5.7 10Base-T Ethernet data interface

The main Ethernet interface function is completed by FMUX2020-BRGS board as model, insert it in the extending slot of FMUX2020-ET board. 10Base-T Ethernet interface, occupying $\mathrm{N} 64 \mathrm{~Kb} / \mathrm{s}$ time slot, connecting to LAN with twisted-pair lines, and conforming to IEEE802.3 standard. It is composed of Ethernet interface processing unit (EIF), memory unit (RAM), multiplexing and demultiplexing unit (MUX\&DEMUX) and control unit MCU.

The $3^{\text {rd }}$ and $6^{\text {th }}$ pins of RJ45 connector are used for data input of the Ethernet interface, the $1^{\text {st }}$ and $2^{\text {nd }}$ pins for data output. Ethernet interface of V2040A is configured as DTE port. Cable should be crossed ( 3 and 6 cross with 1 and 2) when connected with DTE equipment (such as PC), while direct communicating cable can be used when connected with DCE equipment (such as HUB port). Show as figure12.


Figure 12 10Base-T Ethernet interface connection wire diagram

### 5.8 X. 50 data interface

Each X. 50 interface board provides 5 channels of V. 24 synchronous X. 50 data interfaces, all of which are connected with outside line through DB37 male and female connectors or RJ45 jack, and the supported data rates include $2.4 \mathrm{~kb} / \mathrm{s}, 4.8 \mathrm{~kb} / \mathrm{s}, 9.6 \mathrm{k} \mathrm{kb} / \mathrm{s}, 19.2 \mathrm{k} \mathrm{kb} / \mathrm{s}, 38.4 \mathrm{k} \mathrm{kb} / \mathrm{s}$. The occupied time slot varies with bandwidth. The time slot and interface rate is controlled by the network management system. Default configured as asynchronous 9.6 k , and each channel occupy a time slot phase.
X. 50 interface is V. 24 interface, and connection method is as the same as V. 24 interface board. Please reference to figure 9 , table 2 and table 3.

### 5.9 64kb/s G703 data interface

Each $64 \mathrm{~kb} / \mathrm{s}$ G. 703 data interface board can provides as many as 4 channels of $64 \mathrm{~kb} / \mathrm{s}$ data interface, all connected with outside lines through DB25 female connector. Each channel occupies a $64 \mathrm{~kb} / \mathrm{s}$ time slot. The indicator CH1 ~ Ch4 indicates the data input status of the corresponding $64 \mathrm{~kb} / \mathrm{s}$ channel. The signal terminals are shown in Table 6.

Table 6 Signal connection of 64kb/s G703 data interface board

|  | CH1 | CH2 | CH3 | CH4 |
| :---: | :---: | :---: | :---: | :---: |
| Input | 12,24 | 9,21 | 6,18 | 3,15 |
| Output | 13,25 | 10,22 | 7,19 | 4,16 |

### 5.10 UIF data interface

Each UIF data interface board can provide two $U$ interfaces of $2 \mathrm{~B}+\mathrm{D}$ data, which is connected to network termination (NT) and line termination (LT). U interface of the two terminals is communicated, one terminal should be configured as LT, and another should be configured as NT. LT interface synchronize on clock of PCM system; NT port can be sub-rate clock to synchronize U interface line of PCM system.

U interface connect with exterior wire via 2-wire metal wire, and tie-in is middle two-core wire (3 and 4) of RJ12 jack, as the same as standard telephone wire tie-in. Reference to figure 13.


Figure 13 U interface

### 5.11 2-wire audio interface

2-wire audio interface include LS, HOT, LE and magneto interface, each board having 4 channels and connected with outside lines through DB25-pin female connector. The 4 indicators indicate the signaling status of the channel 1 to channel 4 respectively.
a) LS/HOT interface board: 2-wire Loop Subscriber interface, or hotline interface, directly connected to telephone set to complete $D / A$ and $A / D$ conversion, 2-wire/4-wire conversion, ringing, generating ringing signal and test of hook state etc. Indicator light of LS board lighting means picking state, and channel is being occupied.
b) LE interface board: 2-wire Loop Exchange interface, directly connected to exchange to complete $\mathrm{D} / \mathrm{A}$ and $\mathrm{A} / \mathrm{D}$ conversion, 2-wire/4-wire conversion, ringing test, polarity detecting and generating hook state etc. Indicator light of LE board lighting means hooking on state of remote terminal, and channel is being occupied.
c) Magneto interface board: connected to magneto telephone set to complete D/A and A/D conversion, 2-wire/4-wire conversion, generating ringing, test of ringing current, etc. Signaling can be configured as CAS or audio 2100 Hz signaling, and configured by

J1 switch in the board. CAS means convert ringing signal ( $16 \sim 25 \mathrm{~Hz}$ ) to digital CAS A to transmit. 2100 Hz signaling means convert ringing signal $(16 \sim 25 \mathrm{~Hz})$ to audio 2100 Hz to transmit. Indicator light of MS board lighting represent ringing state.
Connection of 2 -wire audio interface reference to table 7 .
Table 7 2-wire loop audio interface connection terminal

| CH1 | CH2 | CH3 | CH4 |
| :---: | :---: | :---: | :---: |
| 13,25 | 10,22 | 7,19 | 4,16 |

### 5.12 EM audio interface

E\&M 2-wire/4-wire audio interface board contains E\&M signaling. Each board has 4 channels of interface connected with outside lines through DB25-pin connector. The 4 indicators lights indicate the signaling status of the channel 1 to channel 4 respectively. E represents input line while M represents output line. ALL ground lines are connected to terminal 1 . Connecting with the other transmission equipment should note definition of E and M line, please reference to table 8 .

Table 8 connection Terminals of E\&M 2-wire/4-wire Audio Interface

|  |  | CH1 | CH2 | CH3 | CH4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4-wire | Input | 12,24 | 9,21 | 6,18 | 3,15 |
|  | Output | 13,25 | 10,22 | 7,19 | 4,16 |
| 2-wire |  | 13,25 | 10,22 | 7,19 | 4,16 |
| E line |  | 11 | 8 | 5 | 2 |
| M line |  | 23 | 20 | 17 | 14 |
| Ground lines |  |  |  |  |  |

### 5.13 2/4-wire magneto interface

Having the same function of MS interface board in 2-wire mode. Completing D/A, A/D conversion, 2-wire/4-wire conversion, generating ringing, test of ringing current. J1 switch in the board configure signaling mode, indictor light lighting means ringing state. Function of 4 -wire mode is as the same as EM audio interface board without E/M signaling. 2/4-wire switch configuration, level modulation, and audio terminal connection (reference to table 8 ) are completely as the same as EM audio interface board.

### 5.14 2Mb/s interface

2M/S interface board use for extracting time slot between mobile base station and exchange and providing data transmission. Each board has two $2 \mathrm{Mb} / \mathrm{s}$ interface, can complete base station time slot extracting of one direction, and can extract two time slot of $2 \mathrm{Mb} /$ s interface beside of base station, then concentrate them in $2 \mathrm{Mb} / \mathrm{s}$ interface of MCT board. These two time slot be called as channel 1 and channel 2 , and can reach different $2 \mathrm{Mb} / \mathrm{s}$ interface (A direction or B direction) of MCT board. FMUX2020 multiplexer which use $2 \mathrm{Mb} / \mathrm{s}$ interface usually choose a $2 \mathrm{Mb} /$ s from exchange as exterior synchronizing clock. Reference to figure 13.


Figure $13 \mathbf{2 M b} /$ s interface board used for extracting time slot

## 6. Malfunction diagnosis and operation

### 6.1 Panel indicator light

FMUX2020 multiplexer has consummate malfunction alarm function, and indicate working state through indicator lights of front panel.

Table 9 Panel indicator lights of FMUX2020 multiplexer

| Symbol |  | Color | Meaning | Remark |
| :---: | :---: | :---: | :---: | :---: |
| PWR | $+5 \mathrm{~V}$ | Green | Flashing means working is normal |  |
|  | RING | Green | Flashing means ringing current output is normal |  |
|  | ALM | Red | Lighting means power supply board is alarming |  |
| V. 35 |  | Green | V. 35 interface receiving/transmitting data( DTE port output or DCE port input) | Flashing averagely in 1 second means looping |
|  |  | Green | V. 35 interface transmitting data (DTE port input or DCE port output) |  |
| V. 24 | $\mathrm{CH} 1 \sim{ }^{\sim} \mathrm{CH} 4$ | Green | Lighting means channe $\mathbf{1}$ has V24 signal inputting. Indicator light flash average $\mathbf{l}$ y in 1 second means V24 port is looping. And indicator light flash 3 times in succession within 4 seconds means X. 50 frame lose synchronism. |  |
| X. 50 | CH1 ~ CH 5 | Green | Lighting means channe $\mathbf{1}$ has V24 signal inputting. Indicator 1ight flash average $\mathbf{1}$ y in 1 second means V24 port is looping. And indicator light flash 3 times in succession within 4 seconds means X. 50 frame lose synchronism. |  |


| G. 703 |  | CH1~ ${ }^{\text {CH4 }}$ |  | Green | Lighting means having data input and channel $\mathrm{CH} 1 \sim$ CH4 are being occupied |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ETHER |  | COL |  | Red | Lighting means collision of network. |  |
|  |  | LINK |  | Green | Lighting means Ethernet interface connection is normal. |  |
|  |  | TXD |  | Green | Lighting means Ethernet port is transmitting data. |  |
|  |  | RXD |  | Green | Lighting means Ethernet port is receiving data. |  |
| $\begin{gathered} \text { LN } \\ \mathrm{a} \\ \mathrm{u} \\ \mathrm{~d} \\ \mathrm{i} \\ \mathrm{o} \end{gathered}$ | LS | $\mathrm{CH1}{ }^{\sim} \mathrm{CH} 4$ |  | Green | Lighting means local terminal is in pick state, and channel $\mathrm{CH} 1{ }^{\sim}$ CH4 are being occupied. |  |
|  | LE | $\mathrm{CH1}{ }^{\text {CH4 }}$ |  | Green | Lighting means remote LS is in pick state, and channe $\mathbf{1 ~ C H 1 ~}{ }^{\sim}$ CH4 are being occupied. |  |
|  | E\&M | $\mathrm{CH1} \sim \mathrm{CH} 4$ |  | Green | Lighting means signaling state of $M 1$ ine(output) of E/M port is occupying(output is 0 ) |  |
|  | MS | $\mathrm{CH} 1 \sim$ CH4 |  | Green | Lighting means ringing state, and channe $\mathbf{1 C H 1}$ ~ CH4 are being occupied. |  |
|  | Нот | $\mathrm{CH1}{ }^{\sim} \mathrm{CH} 4$ |  | Green | Lighting means local terminal is in pick state, and channel $\mathrm{CH} 1^{\sim}$ CH4 are being occupied. |  |
| UIF |  | $\begin{gathered} \hline \mathrm{CH} 1 \sim \\ \mathrm{CH} 2 \end{gathered}$ | $\mathrm{ACT}$ | Green | Lighting means $U$ interface is normal. |  |

Continuous table 9

| Symbol |  |  |  | Color | Meaning | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | UIF | $\begin{gathered} \hline \mathrm{CH} 1 \sim \\ \mathrm{CH} 2 \end{gathered}$ | LFA | Red | Lighting means $U$ interface alarm of losing synchronism, and wire interface connection is abnormal. |  |
| $\begin{gathered} \mathrm{M} \\ \mathrm{C} \\ \mathrm{~T} \\ 1 \\ 2 \\ \mathrm{M} \end{gathered}$ | A direction2M (I1, O1) | LIS |  | Red | Lighting means 2 M signal input losing. |  |
|  |  | LFA |  | Red | Lighting means 2 M signa $\mathbf{1}$ receiving frame lose synchronism. |  |
|  |  | RMA |  | Yellow | Lighting means local E1 interface receiving is normal, while the corresponding terminal is not. |  |
|  |  | BER3 |  | Red | Lighting means 2M interface has error code. |  |
|  |  | MLFA |  | Red | Lighting means multi-frame lose synchronism. |  |
|  | $\begin{gathered} \mathrm{B} \text { direction } \\ 2 \mathrm{M}(\mathrm{I} 2, \mathrm{O} 2) \end{gathered}$ | LIS |  | Red | Lighting means 2 M signal input disappeared. |  |
|  |  | LFA |  | Red | Lighting means receiving frame of 2 M interface lose synchronism. |  |
|  |  | RMA |  | Yellow | Lighting means local E1 interface receiving is normal, while the corresponding terminal is not. |  |
|  |  | BER3 |  | Red | Lighting means 2 M port has error code. |  |


|  |  | MLFA | Red | Lighting means multi-frame lose synchronism. |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

### 6.2 Halting ring operation

Buzzer ring when there is alarm, and press SBL halting ring button can end the ring.

### 6.3 System configuration

### 6.3.1 NMS address configuration

Station number of network management realized by switch SA1, bit 1, 2, 3 and 4 use binary system to represent tens digit of station number, bit $5,6,7$ and 8 use binary system to represent digit of station number. Switch $\mathrm{ON}=1, \mathrm{OFF}=0$, e.g. station NO. 36 dialed as 00110110 , the four bit in the front represent 3 and the last four bit represent 6 .

### 6.3.2 System configuration

### 6.3.2.1 Configuration of MCT board

Configuration of switch SA2 which is in MCT board show as table 10.

Table 10 MCT board configuration ( $\mathrm{ON}=1, \mathrm{OFF}=0$ )

| Switch | Meaning |
| :---: | :---: |
| SA2-1 | NMI network channel choice, $\mathrm{NMI}=0 \mathrm{~N}$ choose TS 31 as network channel, $\mathrm{NMI}=0 \mathrm{FF}$ TS31 use for common function. |
| SA2-2 | $D E F=O F F$ default configuration, $D E F=0 \mathrm{~N} C P U$ write in $64 \mathrm{~kb} / \mathrm{s}$ time slot of each channe 1 in turns after power supply is on. |
| SA2-3 | CH2 The second $2 \mathrm{Mb} / \mathrm{s}$ interface choice: $\mathrm{CH} 2=\mathrm{OFF}$, The second channe $\mathbf{1}$ used normally; $\mathrm{CH} 2=0 \mathrm{~N}$, The second channe $\mathbf{1}$ is off. |
| SA2-4 | ZDL trunk terminal equipment choice, ZDL=OFF terminal equipment, ZDL=ON trunk equipment. |
| SA2-5 | CAS multi-frame choice, CAS=OFF including multi-frame(CAS), CAS=0N Not including multi-frame (no signaling) |
| SA2-6 | System clock choice : SA2-6 SA2-7 SA2-8 |
|  | $1 \begin{array}{llll}1 & 1 & 1 & \mathrm{Mb} / \mathrm{s} \text { exterior clock }\end{array}$ |
| SA2-7 | 64kb/s exterior clock |
|  | 100 Receiving A direction signal |
| SA2-8 | (1 bit of $2 \mathrm{Mb} / \mathrm{s}$ port) clock |
|  | ( 2 bit of $2 \mathrm{Mb} / \mathrm{s}$ port) clock |
|  | $0 \quad 0 \quad 0 \quad$ Master clock |

### 6.3.2.2 Configuration of 10Base-T Ethernet board

FMUX2020-BRGS board inserted in 10Base-T Ethernet board has two 4 bit switch SW1 and SW2.
These switch used to configure interface mode and working mode of subscriber port.
Interface mode configuration of subscriber port show as table 11:

Table 11 Configuration of SW1 switch ( $\mathrm{ON}=\mathbf{0}, \mathrm{OFF}=1$ )

| Switch | Meaning |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SW-1 | SW-1 | SW-2 | SW-3 | SW-4 |  |
|  | 1 | 1 | 1 | 1 | Port adaption (recommend) ; |
| SW-2 | 0 | 1 | 0 | 0 | 10 M half duplex ; |
|  | 0 | x | 1 | 0 | 100 M half duplex ; |
| SW-3 | 0 | 1 | 0 | 1 | 10 M full duplex ; |
|  | 0 | x | 1 | 1 | 100M full duplex ; |
| SW-4 |  |  |  |  |  |

Working mode configuration of UTP Ethernet interface show as table 12:
Table 12 SW 2 switch configuration $(\mathrm{ON}=\mathbf{0}, \mathrm{OFF}=1$ )

| Switch | Meaning |  |
| :---: | :--- | :--- |
| SW-1 | Self-negotiation choice: $1=$ Self-negotiation, $0=$ Not <br> self-negotiation (recommend) $;$ |  |
| SW-2 | Fixation is 1 |  |
| SW-3 | Fixation is 1 |  |
| SW-4 | Fixation is 1 |  |

### 6.3.2.3 Configuration of 2 M board

Switch J in the board use for configuring network management channel opening of FMUX multiplexer connected with $2 \mathrm{Mb} / \mathrm{s}$ interface of $2 \mathrm{Mb} /$ s interface board. TS31 would be network management channel when switch is ON, and close network management channel when switch is OFF.

### 6.3.2.4 Configuration of UTF board

Pin J1 and J2 in the board control NT/LT character of the first U1 channel and the second U2 channel. $\mathrm{J}=\mathrm{ON}$, configured as LT; J=OFF, configured as NT. As to the two terminals which U interface is connected, one of them should be configured as LT, and another should be configured as NT.

J3-J6 used for configuration of wire interface feedback. ;
$\mathrm{J} 3=\mathrm{ON}, \mathrm{J} 5=\mathrm{ON}$ : The first U interface is supplied with -48 V feedback;
$\mathrm{J} 4=\mathrm{ON}, \mathrm{J} 6=\mathrm{ON}$ : The second U interface is supplied with -48 V feedback.

### 6.3.2.5 Configuration of EM board

Configure its working mode via switch in EM board. Show as table 13.
Table 13 2/4-wire switch configuration and level modulation

| Application | Configuration |
| :--- | :--- |
| 2-wire | $2,3,4,6$ of switch SA n $\quad(\mathrm{n}=1 \sim 4)$ <br> configured as ON ; |
| Audio 2- wire | Receiving level $0 \sim-7.5 \mathrm{dBr}$, <br> Transmitting level $0 \sim-7.5 \mathrm{dBr}$ |
| 4-wire | $1,5,7,8$ of switch San configured as ON; |
| Audio 4-wire | Receiving level $+2 \sim-13 \mathrm{dBr}$, <br> Transmitting level $+1 \sim-14 \mathrm{dBr}$. |
| Note: Transmitting level can be modulated by network management software. |  |

### 6.3.2.6 Configuration of magneto interface board

Magneto interface board has two types: MS magneto interface board, 2/4-wire magneto interface board. J1
switch in the board configure two kinds of choice, $\mathrm{J} 1=\mathrm{OFF}$ choose 2100 Hz signaling, $\mathrm{J} 1=\mathrm{ON}$ choose CAS.

### 6.3.2.7 Configuration of V. 35 board

V. 35 interface is synchronous data interface; differ from the direction of clock connected with DCE and DTE equipment, and configured via switch J1 and J2 in the board. ON means connected with DCE equipment, while OFF means connected with DTE equipment. Switch J3 use for configuring polarity of data interface signal (+ or polarity), $\mathrm{J} 3=\mathrm{ON}$ means normal phase, $\mathrm{J} 3=\mathrm{OFF}$ means opposite phase.

### 6.3.2.8 Configuration of HOT board

HOT interface provide two kinds of voice service, and it's configured by switch J1 in the board. ON means hotline mode, while OFF means LS (LOOP SUBSCRIBER).

## 7 Network management system

### 7.1 Connection mode

Network management message is transmitted through RS-232 serial interface connecting the computer to the equipment. For remote FMUX 2020, network management message can be transmitted through the asynchronous data channel of other equipment (such as optical transmission equipment) or TS31 channel of $2 \mathrm{Mb} /$ s primary PCM group. The occupation of TS31 channel should be set with local-end's software. Figure 14 shows the networking mode using GK-G04 type SPDH155 optical transmission equipment. These two FMUX 2020 can share the same monitor platform. Connection with PC show as figure 14.


Figure 12 FMUX2020 integrated network management

### 7.2 System installation

Operating system: Chinese Window9x/NT.
Computer: IBM PC compatible computer.
Installation of accessory software can reference the following steps:
a) Installing management system software

1) Inserting $C D$ in CD-driver, executing...\instal1\disk1\Setup.exe, following the clue, install it at the right location (usually is default).
2) Recording catalogue installed.
b) Establish SPDH management information data base (Needn $\boldsymbol{>} \boldsymbol{t}$ to be modify if it is installed as default catalogue)
3) <Start > menu, executing BDECFG32.EXE in < FMUX network management system > of < process" menu, then, configuration dialog window wil1 appear.
4) Configuring data base language driver process, choosing 'PARADOX' data base in 'Driver Name' list frame. Then, single click 'LANGDRIVE' in 'Parameters', and draw list frame appear at the left side, choose it's 'Borland ENG Latin-1' language driver process. At this time, you complete the data base language driver process configuration.
c) Choosing 'SPDH' in the main window 'Aliases Name:' list, then writing path of SPDH network management system installation in 'PATH' of 'Parameters' at right. Such as 'C:\SPDH'.
d) Closing (' $x$ ' at the right-upside) 'BDE Configuration Utility', 'Close configuration File' dialog frame appear at this time, and choose 'YES' to complete data base configuration.
Operation of SVNMS network management system is introduced in details in HELP file of software.

### 7.3 Main function and operation introduction

Network management function of FMUX system mainly includes alarm management, configuration management and performance management.

Alarm information include equipment monitor alarm performance requirement of GB6879 "Technical Requirements for 2048Kbit/s 30 Channels PCM Multiplexer Equipment", power supply malfunction, receiving PCM signal halting (LIS), losing frame address (LFA), error code ratio equal to or exceed $10^{-3}$, remote monitoring alarm (RMA) , $64 \mathrm{~kb} / \mathrm{s}$ input signal halting etc. System can display current equipment alarm state and record historical alarm. State monitor can display real-time signaling state of audio channel, such as hooking on/hooking off, ringing and so on. As to data interface, state means pass-through and break off state of data.

Configuration means configure composing mode of FMUX2020 via network management background. Configuration parameter store in $E^{2}$ PROM chip of MCT board, and parameter stored after FMUX2020 cut off power supply. After hardware resetting, it load configuration as the state before power supply cut off. Main configuration management includes:
a) Configuration of board type, configured as the board type in practice when appl y FMUX2020.
b) Time slot configuration, each sub-rate can be configured in anyone of time slot TS1~TS31, and add/drop or directly communication of branch channel can be configured at double port trunk station.
c) Remote terminal loop-back, remote $2 \mathrm{Mb} /$ s, audio and data signal all can be configured as loop-back state to make testing conveniently.
Network management operation of FMUX system enter in FMUX network management window after finishing software installation, and its' detailed use introduction in 'HELP' menu. Also you can find detailed use introduction in network management software CD.

