

Pioneer of IP Innovation

How to choose PV & Battery for BSP-300?

Base on optimal assumption!

Outline

 Assumption of usage in optimal case
 Factors in the PV and Battery installation

Assumption

- **System Requirement & Assumption**
 - BSP-300 system: <u>8 Watts</u>
 - 1 x 25W AT Camera: <u>25 Watts</u>
 - 1 x 802.11a/n AP: <u>7 Watts</u> => Total: 40 Watt/hr

Environment Factor (Optimal Case)

8hr sunshine at daytime

- 16hr power consuming from battery at nighttime
 - We got <u>40w x 16hr</u> (**640 Watts**) per night consumed
 - The minimal battery capacity required should be 640 watts
 - 640W/24V = 26Ah (i.e. 12VDC Battery 26Ah x 2 required)
 - Also, that is 80 watt/hr (640w / 8hr) need to be reserved for charging

Get the first PV required

How it calculated

- ✓ PV power up the system & device
- The rest power budget then be used for charging

Factors in the Battery Installation

Environment Factors

Duration of Sunshine

• How long for PV to power the system and also charge the batteries

Battery Efficiency

• There are discharge efficiency that effect the capacity of battery

Temperature

• Temperature will effect the efficiency of batteries for discharge and charge

Factors in the Battery installation

Duration of sunshine

Need to check the Weather Bureau for average hours per day locally

Need to check the cloudy day duration (say, the cloudy day will lasting for how many days)

Factors in the Battery installation

Battery Efficiency

✓ Different Battery will have different discharge efficiency

• Lead-acid, for example, 70% ~ 80%

Battery Capacity Formula

- Assuming the battery capacity formula
 - ✓ C: Capacity (Ah)
 - W: The system load (W)
 - ✓ T: Discharge hours (h)
 - ✓ B_f: Battery Discharge Efficiency
 - V_s: BSP-300 cut-off voltage (to protect battery over discharged)
 - D_c: Cloudy days of the area

$$C = \frac{W \times T}{B_f \times V_s} \times (1 + D_c)$$

- So previously, we have 26Ah Battery
 - ✓ C = 40W x 16h / 24V
- Then the one close to the real environment will be
 - C = [(40W x 16h) / (22V x
 0.7)] x (1+D_c) =42 Ah
 - We got 42Ah (assuming no cloudy days)
 - And if with 1 cloudy days
 - ✓ C= [(40W x <u>24h</u>) / (22V x 0.7)] x (1+<u>1</u>) ≈ 120Ah

Factors in PV

The PV is also with Efficiency

✓ Say for example: 80%

✓ So the new PV required will be:

•N = (640W (sunny day1) + 960 W (cloudy day2)) / 8 = 200 Watt

•PV = (200Watt + 40Watt) / 80% = 300 Watts

• To apply to your system, please check the Excel work sheet below.

Microsoft Office Excel =u§@Şi

Factor in Temperature

The Temperature also will effect the efficiency of battery the battery should installed in a shelter to provide stable and reliable power for BSP-300 system.

ACTIVATING IP POWER