Industrial 8-Port 10/100/1000BASE-T
 + 2-Port 100/1000BASE-X SFP Ethernet Switch

IGS-1020TF
User's Manual

Table Of Contents

1. Package Contents 3
2. Hardware Introduction 4
2.1 Physical Dimensions 4
2.2 Switch Front Panel 5
2.3 LED Indicators 6
2.4 Switch Upper Panel 8
2.5 Wiring the Power Inputs 8
2.6 Wiring the Fault Alarm Contact 10
2.7 Product Specifications 10
3. Installation 14
3.1 DIN-rail Mounting Installation 14
3.2 Wall-mount Plate Mounting. 16
3.3 Installing the SFP Transceiver 17
3.4 Removing the Transceiver Module 19
4. Troubleshooting 20
APPENDIX A: Networking Connection 21
A. 1 Switch's RJ45 Pin Assignments 21
A. 2 RJ45 Cable Pin Assignments 22
A. 3 Fiber Optic Cable Connection Parameter 23
APPENDIX B: Approved PLANET SFP Transceivers 25

1.Package Contents

Thank you for purchasing PLANET industrial 10-port Gigabit Ethernet Switch, IGS-1020TF. In the following section, the term "Industrial Gigabit Ethernet Switch" means the IGS-1020TF.

Open the box of the Industrial Gigabit Ethernet Switch and carefully unpack it. The box should contain the following items:

Industrial Gigabit Ethernet Switch x 1	User's Manual x 1
Wall-mount Kit x	
$\bullet \quad \bullet$	\bullet

If any of these are missing or damaged, please contact your dealer immediately; if possible, retain the carton including the original packing material, and use them again to repack the product in case there is a need to return it to us for repair.

2. Hardware Introduction

2.1 Physical Dimensions

■ IGS-1020TF Industrial Gigabit Ethernet Switch dimensions (W x D x H): $135 \times 87.8 \times 50 \mathrm{~mm}$

2.2 Switch Front Panel

The front panel of the Industrial Gigabit Ethernet Switch consists of 8 auto-sensing 10/100/1000Mbps Ethernet RJ45 ports and 2 dual speed 100/1000BASE-X SFP slots. The LED Indicators are also located on the RJ45 ports and SFP slots of the Gigabit Ethernet Switch.

Figure 2-1 shows the front panel of Industrial Gigabit Ethernet Switch.

Figure 2-1: IGS-1020TF Front Panel
■ Gigabit TP Interface
10/100/1000BASE-T Copper, RJ45 Twisted-pair: Up to 100 meters.

- SFP Slot

100/1000BASE-X mini-GBIC slot, SFP (Small-form Factor Pluggable) transceiver module: From 550 meters to 2 km (multi-mode fiber) and 10/20/30/40/50/70/120 kilometers (single-mode fiber).

2.3 LED Indicators

System

LED	Color	Function
P1	Green	Lit: indicates power 1 has power.
P2	Green	Lit: indicates power 2 has power.
FAULT	Red	Lit: indicates either power 1 or power 2 has no power.

Per 10/100/1000T Port

LED	Color	Function
$\begin{aligned} & 100 \\ & \text { LNK/ACT } \end{aligned}$	Orange	Lit: indicates the link through that port is successfully established at 100 Mbps or 10 Mbps . Blinking: indicates that the Switch is actively sending or receiving data over that port. Off: indicates the link through that port is successfully established at 1000 Mbps .
$\begin{aligned} & 1000 \\ & \text { LNK/ACT } \end{aligned}$	Green	Lit: indicates the link through that port is successfully established at 1000Mbps or 10 Mbps . Blinking: indicates that the Switch is actively sending or receiving data over that port. Off: indicates the link through that port is successfully established at 100 Mbps .

Per 100 / 1000X SFP Slot

LED	Color	Function
100		
LNK/ACT	Orange	Lit: indicates the link through that port is successfully established at $100 \mathrm{Mbps}$. Blinking: indicates that the Switch is actively sending or receiving data over that port.
Off: indicates the link through that port is		
successfully established at 1000Mbps.		

2.4 Switch Upper Panel

The upper panel of the Industrial Gigabit Ethernet Switch consists of one terminal block connector within two DC power inputs,

Figure 2-2 shows the upper panel of the Industrial Gigabit Ethernet Switch.

Figure 2-2: Industrial Gigabit Ethernet Switch Upper Panel

2.5 Wiring the Power Inputs

The 6-contact terminal block connector on the top panel of Industrial Gigabit Ethernet Switch is used for two DC redundant power inputs. Please follow the steps below to insert the power wire.

1. Insert positive and negative DC power wires into contacts 1 and 2 for POWER 1, or 5 and 6 for POWER 2.

2. Tighten the wire-clamp screws for preventing the wires from loosening.

3. The wire gauge for the terminal block should be in the range between 12 and 24 AWG.

Note
2. The DC power input range is $12 \mathrm{~V} \sim 48 \mathrm{~V}$ DC.

2.6 Wiring the Fault Alarm Contact

The fault alarm contacts are in the middle of the terminal block connector as the picture shows below. Inserting the wires, the Industrial Gigabit Ethernet Switch will detect the fault status of the power failure and then forms an open circuit. The following illustration shows an application example for wiring the fault alarm contacts.

Insert the wires into the fault alarm contacts

1. The wire gauge for the terminal block should be in the range between 12 and 24 AWG.
2. Alarm relay circuit accepts up to 30V, max. 3A currents.

2.7 Product Specifications

Model	IGS-1020TF
Hardware Specifications	
Copper Ports	$8 \times 10 / 100 / 1000 B A S E-T ~ R J 45 ~ T P ~$ Auto-MDI/MDI-X, auto-negotiation

SFP/mini-GBIC Slots	2 1000BASE-SX/LX/BX SFP interfaces (Port-9 and Port-10) Compatible with 100BASE-FX SFP
Switch Processing Scheme	Store-and-Forward
Switch Fabric	20Gbps (non-blocking)
Switch Throughput (packet per second)	14.88Mpps@64bytes
MAC Address Table	4K entries
Flow Control	Back pressure for half duplex IEEE $802.3 x$ pause frame for full duplex
Jumbo Frame	9216 bytes
Connector	Removable 6-pin terminal block Pin $1 / 2$ for Power 1; Pin $3 / 4$ for fault alarm; Pin 5/6 for Power 2
Alarm	Provides one relay output for power failure Alarm Relay current carry ability: 1A @ DC 24V
LED Indicator	$3 \times$ LED for System and Power: Green: DC Power 1 Green: DC Power 2 Red: Power Fault $2 \times$ LED for Per Copper Port (Port- 1~Port-8): Green: 1000 LNK/ACT Orange: 100 LNK/ACT $2 \times$ LED for Per mini-GBIC interface (Port-9 and Port-10) Green: 1000 LNK/ACT Orange: 100 LNK/ACT

ESD Protection		6KV DC
Enclosure		IP30 type metal case
Installation		DIN rail kit and wall mount ear
Dimensions$(W \times D \times H)$		$56 \times 87 \times 135 \mathrm{~mm}$
Weight		540 g
Power Requirements		DC $12 \sim 48 \mathrm{~V}$ or AC 24 V Redundant power with polarity reverses protection function
Power Consumption/ Dissipation		8.7watts/29.69BTU
Cable	Twisted-pair	10BASE-T: 2-pair UTP Cat. 3, 4, 5, up to 100 meters 100BASE-TX: 2-pair UTP Cat. 5, 5e up to 100 meters 1000BASE-T: 4-pair UTP Cat. 5e, 6 up to 100 meters
	Fiber-Optic Cable	1000BASE-SX : $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ multi-mode fiber optic cable, up to 550 m 1000BASE-LX : $9 / 125 \mu \mathrm{~m}$ single-mode fiber optic cable, up to 10/20/30/40/50/70/120 kilometers (vary on SFP module) 100BASE-FX : $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ multi-mode fiber optic cable, up to 2 kilometers $9 / 125 \mu \mathrm{~m}$ single-mode fiber optic cable, up to 20/40/60 kilometers (vary on SFP module)

Standards Conformance	
	IEEE 802.3 Ethernet/10BASE-T IEEE 802.3u Fast Ethernet/100BASE-TX Standards Compliance IEEE 802.3ab Gigabit Ethernet/1000BASE-T
	IEEE 802.3z Gigabit Ethernet/1000BASE-SX/LX IEEE 802.3x Full-Duplex Flow Control IEEE 802.3az Energy Efficient Ethernet (EEE) IEEE 802.1p Cos
Regulatory Compliance	FCC Part 15 Class A, CE
Stability Testing	IEC60068-2-32 (free fall) IEC60068-2-27 (anti-shock) IEC60068-2-6 (anti-vibration)
Environment	Operating: -40~75 degrees C Storage: -40~75 degrees C
Temperature	Operating: 5~95\% (non-condensing) Storage: 5~95\% (non-condensing)
Humidity	

3. Installation

This section describes the functionalities of the Industrial Gigabit Ethernet Switch's components and guides how to install it on the DIN-rail and wall. Basic knowledge of networking is assumed. Please read this chapter completely before continuing.
This following picture is telling the user how
to install the device, and the device is not IGS-
1020TF.

3.1 DIN-rail Mounting Installation

The DIN-rail is screwed on the Industrial Gigabit Ethernet Switch when out of factory. When replacing the wall-mount application with DIN-rail application, Industrial Gigabit Ethernet Switch is needed. Please refer to the following figures to screw the DIN-rail on the Industrial Gigabit Ethernet Switch. To hang the Industrial Gigabit Ethernet Switch, follow the following steps:

Step 1: Screw the DIN-rail on the Industrial Gigabit Ethernet Switch.

Step 2: Lightly insert the bottom of the switch into the track

Step 3: Make sure if the DIN-Rail is tightly secured on the track.

Step 4: Please refer to the following procedures to remove the Industrial Gigabit Ethernet Switch from the track.

Step 5: Lightly pull out the bottom of the switch for removing it from the track.

3.2 Wall-mount Plate Mounting

To install the Industrial Gigabit Ethernet Switch on the wall, please follow the instructions described below.

Step 1: To remove the DIN-Rail from the Industrial Gigabit Ethernet Switch, loosen the screws to remove the DIN-rail.

Step 2: Place the wallmount plate on the rear panel of the Industrial Gigabit Ethernet Switch.

Step 3: Use the screws to screw the wallmount plate on the Industrial Gigabit Ethernet Switch.

Step 4: Use the hook holes at the corners of the wallmount plate to hang the Industrial Gigabit Ethernet Switch on the wall.

Step 5: To remove the wallmount plate, reverse the steps above.

3.3 Installing the SFP Transceiver

The sections describe how to insert an SFP transceiver into an SFP slot.

The SFP transceivers are hot-pluggable and hot-swappable. You can plug in and out the transceiver to/from any SFP port without having to power down the Industrial Gigabit Ethernet Switch as Figure 2-3 shows.

Figure 3-1: Plug-in the SFP Transceiver
PLANET Industrial Gigabit Ethernet Switch supports 100/1000 dual mode with both single mode and multi-mode SFP transceivers.

1. Before we connect Industrial Gigabit Ethernet Switch to the other network device, we have to make sure both sides of the SFP transceivers are with the same media type, for example, 1000BASE-SX to 1000BASE-SX, 1000BASE-LX to 1000BASE-LX.
2. Check whether the fiber-optic cable type matches with the SFP transceiver requirement.
> To connect to 1000BASE-SX SFP transceiver, please use the multi-mode fiber cable with one side being the male duplex LC connector type.
$>$ To connect to 1000BASE-LX or 1000BASE-BX SFP transceiver, please use the single-mode fiber cable with one side being the male duplex LC connector type.

- Connect the Fiber Cable

1. Insert the duplex LC connector into the SFP transceiver.
2. Connect the other end of the cable to a device with SFP transceiver installed.
3. Check the LNK/ACT LED of the SFP slot on the front of the Industrial Gigabit Ethernet Switch. Ensure that the SFP transceiver is operating correctly.
4. Check the Link mode of the SFP port if the link fails.

Note

It is recommended to use PLANET SFPs on the Industrial Gigabit Ethernet Switch. If you insert an SFP transceiver that is not supported, the Industrial Gigabit Ethernet Switch will not recognize it.

3.4 Removing the Transceiver Module

1. Make sure there is no network activity by consulting or checking with the network administrator. Or through the management interface of the switch/converter (if available) to disable the port in advance.
2. Remove the Fiber Optic Cable gently.
3. Turn the lever of the MGB/MFB module to a horizontal position.
4. Pull out the module gently through the lever.

Figure 3-2: Pull Out from the Transceiver
Never pull out the module without pulling the
lever or the push bolts on the module. Directly
pulling out the module with force could damage
the module and the SFP module slot of the
Industrial Gigabit Ethernet Switch.

4. Troubleshooting

This chapter contains information to help you solve issues. If the Industrial Gigabit Ethernet Switch is not functioning properly, make sure the Industrial Gigabit Ethernet Switch was set up according to instructions in this manual.

The per port LED is not lit

Solution:
Check the cable connection of the Industrial Gigabit Ethernet Switch.

Per port LED is lit, but the traffic is irregular

Solution:
Check whether the attached device is not set to dedicated full duplex. Some devices use a physical or software switch to change duplex modes. Auto-negotiation may not recognize this type of full-duplex setting.

Why the Industrial Gigabit Ethernet Switch doesn't connect to the network

Solution:
Check each port LED on the Industrial Gigabit Ethernet Switch. Try another port on the Industrial Gigabit Ethernet Switch. Make sure the cable is installed properly and the right type. Turn off the power. After a while, turn on the power again.

Can I install MGB-SX or other non wide temperature SFP module into SFP slot of Industrial Gigabit Ethernet Switch?

Solution:
Yes, you can. However, the MGB-SX and the other non wide temperature SFP module cannot operate under -40 to 75 degrees C .

APPENDIX A: Networking Connection

A. 1 Switch's RJ45 Pin Assignments

1000Mbps, 1000BASE-T

Contact	MDI	MDI-X
1	BI_DA+	BI_DB+
2	BI_DA-	BI_DB-
3	BI_DB+	BI_DA+
4	BI_DC+	BI_DD+
5	BI_DC-	BI_DD-
6	BI_DB-	BI_DA-
7	BI_DD+	BI_DC+
8	BI_DD-	BI_DC-

10/100Mbps, 10/100BASE-TX

RJ45 Connector pin assignment			
Contact	Media Dependent Interface	MDI- C Media Dependent Interface -Cross	
1	Tx + (transmit)	Rx + (receive)	
2	Tx - (transmit)	Rx - (receive)	
3	Rx + (receive)	Tx + (transmit)	
4,5	Not used		
6	$R x-$ (receive)	Tx - (transmit)	
7,8	Not used		

A. 2 RJ45 Cable Pin Assignments

The standard RJ45 receptacle/connector
There are 8 wires on a standard UTP/STP cable and each wire is color-coded. The following shows the pin allocation and color of straight-through cable and crossover cable connection:

Figure A-1: Straight-through and Crossover Cable
Please make sure your connected cables are with the same pin assignment and color as the above picture before deploying the cables into your network.

A. 3 Fiber Optic Cable Connection Parameter

The wiring details are shown below:

100FX Fiber Optic Cables:

Standard	Fiber Type	Cable Specifications
100BASE-FX $(1300 \mathrm{~nm})$	Multi-mode	$50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$
100BASE-FX	Multi-mode	$50 / 125 \mu \mathrm{~m}$ or $(1310 \mathrm{~nm})$
	Single-mode	$9 / 125 \mu \mathrm{~m}$
100BASE-BX-U	Single-mode	$9 / 125 \mu \mathrm{~m}$
(TX:1310/RX:1550)		
100BASE-BX-D		
(TX:1550/RX:1310)		

1000X Fiber Optic Cables:

Standard	Fiber Type	Cable Specifications
1000BASE-SX $(850 \mathrm{~nm})$	Multi-mode	$50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$
1000BASE-LX $(1300 \mathrm{~nm})$	Multi-mode	$50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$
	Single-mode	$9 / 125 \mu \mathrm{~m}$

Wiring Distances:

Standard	Fiber	Diameter (micron)	Modal Bandwidth (MHz * km)	Max. Distance (meters)
1000BASE- SX	MM	62.5	100	220
		62.5	200	275
		50	400	500
		50	500	550
1000BASE- LX	MM	62.5	5	550
		50	4	
		50	5	
	SM	9	N/A	5000*

APPENDIX B: Approved PLANET SFP Transceivers

The following list of approved PLANET SFP transceivers is correct at the time of publication:

Gigabit SFP Transceiver Modules

MGB-GT	SFP-Port 1000BASE-T Module - 100m
MGB-SX	SFP-Port 1000BASE-SX mini-GBIC module - 550m
MGB-SX2	SFP-Port 1000BASE-SX mini-GBIC module - 2km
MGB-LX	SFP-Port 1000BASE-LX mini-GBIC module - 10km
MGB-L30	SFP-Port 1000BASE-LX mini-GBIC module - 30km
MGB-L50	SFP-Port 1000BASE-LX mini-GBIC module - 50km
MGB-L70	SFP-Port 1000BASE-LX mini-GBIC module - 70km
MGB-L120	SFP-Port 1000BASE-LX mini-GBIC module - 120km
MGB-LA10	SFP-Port 1000BASE-LX (WDM, TX:1310nm) mini- GBIC module - 10km
MGB-LB10	SFP-Port 1000BASE-LX (WDM, TX:1550nm) mini- GBIC module - 10km
MGB-LA20	SFP-Port 1000BASE-LX (WDM, TX:1310nm) mini- GBIC module - 20km
MGB-LB20	SFP-Port 1000BASE-LX (WDM, TX:1550nm) mini- GBIC module - 20km
MGB-LA40	SFP-Port 1000BASE-LX (WDM, TX:1310nm) mini- GBIC module - 40km
MGB-LB40	SFP-Port 1000BASE-LX (WDM, TX:1550nm) mini- GBIC module - 40km

MGB-LA60	SFP-Port 1000BASE-LX (WDM, TX:1310nm) miniGBIC module - 60km
MGB-LB60	SFP-Port 1000BASE-LX (WDM, TX:1550nm) miniGBIC module - 60 km
MGB-TSX	SFP-Port 1000BASE-SX mini-GBIC module - 550m (-40~75 ${ }^{\circ} \mathrm{C}$)
MGB-TLX	$\begin{aligned} & \text { SFP-Port 1000BASE-LX mini-GBIC module - } 10 \mathrm{~km} \\ & \left(-40 \sim 75^{\circ} \mathrm{C}\right) \end{aligned}$
MGB-TL30	SFP-Port 1000BASE-LX mini-GBIC module - 30km (-40~75 ${ }^{\circ} \mathrm{C}$)
MGB-TL70	$\begin{aligned} & \text { SFP-Port 1000BASE-LX mini-GBIC module - } 70 \mathrm{~km} \\ & \left(-40 \sim 75^{\circ} \mathrm{C}\right) \end{aligned}$
MGB-TLA10	SFP-Port 1000BASE-LX (WDM, TX:1310nm) miniGBIC module - 10km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLB10	SFP-Port 1000BASE-LX (WDM, TX:1550nm) miniGBIC module - 10km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLA20	SFP-Port 1000BASE-LX (WDM, TX:1310nm) miniGBIC module - 20km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLB20	SFP-Port 1000BASE-LX (WDM, TX:1550nm) miniGBIC module - 20km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLA40	SFP-Port 1000BASE-LX (WDM, TX:1310nm) miniGBIC module - 40km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLB40	SFP-Port 1000BASE-LX (WDM, TX:1550nm) miniGBIC module - 40km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLA60	SFP-Port 1000BASE-LX (WDM, TX:1310nm) miniGBIC module - 60km ($-40 \sim 75^{\circ} \mathrm{C}$)
MGB-TLB60	SFP-Port 1000BASE-LX (WDM, TX:1550nm) miniGBIC module $-60 \mathrm{~km}\left(-40 \sim 75^{\circ} \mathrm{C}\right)$

Fast Ethernet SFP Transceiver Modules

MFB-FX	SFP-Port 100BASE-FX Transceiver (1310nm) - 2km
MFB-F20	SFP-Port 100BASE-FX Transceiver (1310nm) 20km
MFB-F40	SFP-Port 100BASE-FX Transceiver (1310nm) 40km
MFB-F60	SFP-Port 100BASE-FX Transceiver (1310nm) 60km
MFB-F120	SFP-Port 100BASE-FX Transceiver (1550nm) 120km
MFB-FA20	SFP-Port 100BASE-BX Transceiver (WDM, TX:1310nm) - 20km
MFB-FB20	SFP-Port 100BASE-BX Transceiver (WDM, TX:1550nm) - 20km
MFB-TFX	$\begin{aligned} & \text { SFP-Port 100BASE-FX Transceiver (1310nm)-2km } \\ & \left(-40 \sim 75^{\circ} \mathrm{C}\right) \end{aligned}$
MFB-TF20	SFP-Port 100BASE-FX Transceiver (1310nm) - $20 \mathrm{~km}\left(-40 \sim 75^{\circ} \mathrm{C}\right)$
MFB-TFA20	SFP-Port 100BASE-BX Transceiver (WDM, TX:1310nm) - 20km (-40~75º $)$
MFB-TFB20	SFP-Port 100BASE-BX Transceiver (WDM, TX:1550nm) - 20km (-40~75º $)$
MFB-TFA40	SFP-Port 100BASE-BX Transceiver (WDM, TX:1310nm) - 40km (-40~75º $)$
MFB-TFB40	SFP-Port 100BASE-BX Transceiver (WDM, TX:1550nm) - 40km (-40~75º $)$

